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Problem Statement

 As the geographical and temporal coverage, the
spectral and spatial resolution, and the number of
individual remote sensors increase, the sheer
volume and complexity of available data sets will
complicate management and use of the rapidly
growing archive of earth imagery.

 Mining this vast data resource for images that
provide the necessary information for climate
change studies becomes more difficult as more
sensors are launched and more imagery is
obtained.



Goal and Objectives

 Goal:
 Improve global change studies by facilitating access to and

improving analysis of remote sensing imagery

 Objectives:
 Develop and test software applications and techniques
for characterizing spatial complexity and content of
images

 Evaluate the utility of content-based image
descriptors such as:  fractal dimension, lacunarity, and
spatial autocorrelation statistics in  measuring and
characterizing land covers and land-cover changes
with a variety of multi-scale, multi-temporal, and multi-
sensor data.



Schedule and Milestones

 Year 1 (6/01 _ 5/02):
 Assemble imagery database;
 Develop and implement global (whole image) fractal,
lacunarity, wavelet and spatial autocorrelation algorithms

 Year 2 (6/02 _ 5/03):
 Perform scaling sensitivity analysis of global spatial indices;
 Develop and implement algorithms for local spatial analysis
of imagery

 Year 3 (6/03 _ 8/04):
 Perform analysis of land cover characterization capabilities;
 Analyze effects of band ratioing, resampling, and other
image processing procedures

 Examine utility of spatial descriptors as search indices



ICAMS – Image Characterization
and Modeling System

 Standalone and Java Web
Start applications for spatial
analysis of imagery

 Measures:
 Fractal Dimension
 Spatial Autocorrelation

Indices
 Moran’s I, Geary’s C,

Getis’ G
 Wavelet Signatures

C++

Java 
Web Start



Spatial Complexity and Texture

 Most remote sensing techniques that consider
spatial structure are measures of image texture
 Texture is the spatial arrangement of color and tone

that form natural visual entities
 Texture analysis methods include:

 Statistical methods
 Local variance/standard deviation

 Feature-based methods
 Orientation, contrast (Gray-level co-occurrence), and

spatial frequency (FFT and wavelets), join counts
(Moran’s I)

 Model-based methods
 Fractals, Markov chains



Texture Data Sources

 Most modern optical remote sensors have a high resolution
“Pan-sharpening” band in addition to lower resolution visible,
near-infrared, and thermal infrared bands
 SPOT
 Landsat 7
 Ikonos, Quickbird

 Statistical texture analysis methods require lots of pixels, so this
resource is valuable as an input to determining overall image
complexity

 Other analyses are possible
 Individual bands
 Principal components
 Ratios (NDVI, etc.)



Fractal Dimension

 True fractals are objects that are made of parts similar to the whole in
some way—self-similarity

 Fractal Dimension:  Non-integer and exceeds the topological integer
dimension
 Euclidean dimensions 0, 1, 2, 3 correspond to points, lines, areas,

volumes
 Fractal dimension for an image ranges from 2.0 for a flat plane to ~ 3.0

for a complex surface with bright and dark pixels closely adjacent
 A problem with fractal dimension is that different textures can have

similar fractal dimensions
 Lacunarity is a related concept that measures the homogeneity or

heterogeneity of gaps in a pattern
 Unlike fractals, which are based on the scale-independent concept of

self-similarity, lacunarity varies with scale
 It is a second moment to fractal dimension, so the ratio of lacunarity to

fractal dimension may provide a more unique measure of texture



Moran’s I Index of Spatial
Autocorrelation

Clumped Pattern   Random Pattern  Dispersed Pattern
     I ≈ +1.0         I ≈ 0.0         I ≈ -1.0
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Verifying Indices of Spatial
Complexity

 Analysis of 25 simulated gray-scale
surfaces with known fractal dimension

 3 methods of measuring fractal dimension
 Triangular prism, Isarithm, Semi-variogram

 Triangular prism measurement method is
most accurate in the range of values
commonly encountered in remotely
sensed imagery (D = 2.6 - ~3.0)
 This method is sensitive to contrast

stretching
 Isarithm method is relatively robust, but

has many input parameters and cannot
effectively measure low dimension
(smooth) surfaces

 Semi-variogram method of measuring
fractal dimension is computationally
expensive and relatively inaccurate



Effect of Contrast Stretching on the
Isarithm and Triangular Prism Methods
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Comparison of Spatial Indices
for Image Classification

 Supervised classification accuracies can be improved by including spatial
measurements

 Moran’s I is a sensitive indicator of landscape change in a binary sense
 Separability of change types is problematic

 Fractal Dimension can be used to classify urban scenes according to surface
complexity

 Spectral information is still valuable

Local Variance Loc. Fractal Dim. Local Moran’s I



Overall Classification
Accuracy
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Land Area Estimates
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NALC Anthropogenic Land
Cover Change

High Intensity UrbanLow Intensity Urban

Quarries, Transitional
Areas

Forest

Low Intensity UrbanForest

Pasture/GrasslandPasture/Grassland

BarrenPasture/Grassland

Low Intensity UrbanPasture/Grassland

1991 Land Cover1976 Land Cover



Mean Local Fractal Dimension
Difference 1976 - 1991
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Atlanta Population Growth
1990 - 2000

Residuals from Regression of 1990 and 2000 
Fractal Dimensions

Legend
spareg14.RES_9
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 SPOTTM images from 1990 were resampled to 15 m resolution and registered to 2000 Landsat
7 pan images of USGS quarter quadrangles

 Fractal dimensions for each date were computed for each quarter quad for each date
 The fractal dimension values for the two dates were then regressed on one another

Source:  Atlanta Regional Commission, 2001
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Fractal Dimension as a Content-
Based Image Descriptor

 Residual fractal dimensions of two dates of quarter quadrangle images were only
loosely correlated (R2 = 0.37) to population changes between 1990 and 2000
 Anthropogenic changes can simplify the texture of an image

 Replacing forest with industrial/commercial development
 Development that replaces grassland with housing leads to more complex images

 However, negative residuals were generally associated with large population
increases

Duluth, GA NE Quarter Quadrangle

SPOT 1990 Landsat ETM+ 2000



Spatial Metadata: Quadtree
Segmentation

NW                     NE                 SE              SW



Similarity Search

Image
Database

Texture analysis
Of quadtree regions

Texture
Indices

Select Areas
of Interest

Texture analysis of
Interest regions

List of 
texture
values

Similar
Images

 For database of 238 quarter quadrangle
images, texture measures were
obtained for quadtree levels 0 – 3

 An example image is segmented by the
user to set up a search string

 References to images that match the
pattern of texture measures in the
example are returned to the user

 Quadtree structure allows topology to
be included in the search to increase
flexibility



Wavelet
Multiresolution
Decomposition

 Wavelet transform is more accurate than fractal
dimension for detecting and characterizing spatial
structures.

 A longer wavelet is more accurate;

  The combination of energy signatures from multiple
decomposition levels and multispectral bands leads
to better image characterization results



Wavelet-Based Image
Segmentation:  Hurricane Hugo

 The darkest and the brightest pixels in the difference image
signal greatest frequency changes in negative and positive
directions, respectively

Landsat TM  
October 14, 1987

Landsat TM  
October 11, 1989

Francis Marion National Forest, South Carolina (hit by Hugo Sep. 25, 1989)

Difference between
Level 2 wavelet

energies for 
1987 and 1989



Notes for Further Research

 Evaluate optimal window sizes and other method
parameters
 Involves space-scale relationships and modifiable areal

unit problem

 Examine utility of spatial image descriptors as
search indices

 Analyze effects of image processing procedures
 Band ratioing, resampling, rescaling, radiometric

corrections

 Complete the development of the Web interface
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